FOURIER REPRESENTATIONS FOR PERIODIC SOLUTIONS OF ODD-PARITY SYSTEMS

R. E. Mickens
Department of Physics, Clark Atlanta University, Atlanta, GA 30314, U.S.A.
E-mail: rohrs@math.gatech.edu

(Received 26 December 2001)
Many important oscillatory dynamical systems are modelled by differential equations which take the form [1]

$$
\begin{equation*}
H(x, \dot{x}, \ddot{x})=\ddot{x}+x+\varepsilon f(x, \dot{x})=0 \tag{1}
\end{equation*}
$$

where ε is a positive parameter and $f(x, y)$ is a rational function of its two arguments. An odd-parity system is defined to be one for which the following property holds:

$$
\begin{equation*}
x \rightarrow-x \Rightarrow H(-x,-\dot{x},-\ddot{x})=-H(x, \dot{x}, \ddot{x}) \tag{2}
\end{equation*}
$$

Consider now the following two odd-parity systems along with their corresponding perturbation derived solutions (for the case where $0<\varepsilon \ll 1$) [1, 2]:

$$
\begin{gather*}
\ddot{x}+x+\varepsilon x^{3}=0 ; \quad x(0)=A, \quad \dot{x}(0)=0, \tag{3}\\
x(\theta, \varepsilon)=A \cos \theta+\varepsilon\left(\frac{A^{3}}{32}\right)(-\cos \theta+\cos 3 \theta) \\
+\varepsilon^{2}\left(\frac{A^{5}}{1024}\right)(23 \cos \theta-24 \cos 3 \theta+\cos 5 \theta)+O\left(\varepsilon^{3}\right), \tag{4a}\\
\theta(\varepsilon, t) \equiv \omega(\varepsilon) t=\left[1+\varepsilon\left(\frac{3 A^{2}}{8}\right)-\varepsilon^{2}\left(\frac{21 A^{4}}{256}\right)+O\left(\varepsilon^{3}\right)\right] t \tag{4b}
\end{gather*}
$$

and

$$
\begin{gather*}
\ddot{x}+x=\varepsilon\left(1-x^{2}\right) \dot{x}, \tag{5}\\
x(\theta, \varepsilon)=2 \cos \theta+\left(\frac{\varepsilon}{4}\right)(3 \sin \theta-\sin 3 \theta) \\
+\left(\frac{\varepsilon^{2}}{96}\right)(-13 \cos \theta+18 \cos 3 \theta-5 \cos 5 \theta)+O\left(\varepsilon^{3}\right), \tag{6a}\\
\theta(\varepsilon, t) \equiv \omega(\varepsilon) t=\left[1-\frac{\varepsilon^{2}}{16}+O\left(\varepsilon^{3}\right)\right] t \tag{6b}
\end{gather*}
$$

Note that for both of these odd-parity systems the perturbation solutions have trigonometric expansions in which only odd multiples of the angular frequencies (ω) appear!

To further illustrate the issue, examine the same situation for a mixed-parity system given by the equation [1]

$$
\begin{equation*}
\ddot{x}+x+\varepsilon \alpha x^{2}+\varepsilon^{2} \beta x^{3}=0 \tag{7a}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=O(1), \quad x(0)=A, \quad \dot{x}(0)=0 . \tag{7b}
\end{equation*}
$$

The perturbation derived solution is

$$
\begin{align*}
x(\theta, \varepsilon)= & A \cos \theta+\varepsilon\left(\frac{\alpha A^{2}}{6}\right)(-3+2 \cos \theta+\cos 2 \theta) \\
& +\varepsilon^{2}\left(\frac{A^{3}}{3}\right)\left[-\alpha^{2}+\left(\frac{174 \alpha^{2}-27 \beta}{288}\right) \cos \theta\right. \\
& \left.+\left(\frac{\alpha^{2}}{3}\right) \cos 2 \theta+\left(\frac{2 \alpha^{2}+3 \beta}{32}\right) \cos 3 \theta\right]+O\left(\varepsilon^{3}\right), \tag{8a}\\
\theta(\varepsilon, t) \equiv & \omega(\varepsilon) t=\left[1+\varepsilon^{2}\left(\frac{9 \beta-10 \alpha^{2}}{24}\right) A^{2}+O\left(\varepsilon^{3}\right)\right] t . \tag{8b}
\end{align*}
$$

Observe for this mixed-parity case that both even and odd multiples of the angular frequency (ω) occur.

The main purpose of this Letter-to-the-Editor is to demonstrate the correctness of the following proposition: For odd-parity systems, the Fourier representations only include contributions from terms having odd multiples of the angular frequency. In other words, such systems have periodic solutions which take the form

$$
\begin{equation*}
x(t)=\sum_{k=1}^{\infty}\left[A_{k} \cos (2 k-1) \omega t+B_{k} \sin (2 k-1) \omega t\right] . \tag{9}
\end{equation*}
$$

To proceed, the following assumptions are needed:
(1) Equation (1) is of odd-parity.
(2) The periodic solutions of equation (1) occur about the fixed-point $(\bar{x}, \bar{y})=(0,0)$ in the two-dimensional phase-space (x, y), where $y=\dot{x}$.
(3) The periodic solutions of equation (1) are essentially unique [1, 2]. Within this context, essentially unique means that if $x=\phi(t)$ is a non-trivial periodic solution, then for $t_{0}>0, z=\phi\left(t-t_{0}\right)$ is also a periodic solution. From the perspective of phase space, the moving point

$$
\begin{equation*}
(x(t), y(t))=(\phi(t), \dot{\phi}(t)) \tag{10}
\end{equation*}
$$

traces out a closed path. Likewise, the moving point

$$
\begin{equation*}
(z(t), \dot{z}(t))=\left(\phi\left(t-t_{0}\right), \dot{\phi}\left(t-t_{0}\right)\right) \tag{11}
\end{equation*}
$$

traces out the same closed path, except for being shifted in phase.
Assume that equation (1) has a periodic solution with period T; the corresponding angular frequency is

$$
\begin{equation*}
\omega=2 \pi / T \tag{12}
\end{equation*}
$$

and $x(t)$ has the complex Fourier representation [3]

$$
\begin{equation*}
x(t)=\sum_{k=1}^{\infty}\left[a_{k} \mathrm{e}^{\mathrm{i} k \omega t}+a_{k}^{*} \mathrm{e}^{\mathrm{i} k \omega t}\right], \tag{13}
\end{equation*}
$$

where a_{k} are complex valued coefficients. Now if $x(t)$ is a periodic solution, then so is $z(t)$ defined as

$$
\begin{equation*}
z(t) \equiv-x\left(t+\frac{T}{2}\right) \tag{14}
\end{equation*}
$$

This follows from the fact that both $x(t)$ and $-x(t)$ are solutions, and consequently $x\left(t-t_{0}\right)$ and $-x\left(t-t_{0}\right)$ are also periodic solutions. In equation (14), t_{0} is taken to be $t_{0}=-T / 2$. Since $z(t)$ is a solution to equation (1), it follows from uniqueness that

$$
\begin{equation*}
z(t)=x(t) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
x\left(t+\frac{T}{2}\right)=-x(t) \tag{16}
\end{equation*}
$$

Substituting equation (13) into equation (16) and comparing the coefficients of the two exponential terms gives the relation

$$
\begin{equation*}
(-1)^{k} a_{k}=-a_{k} \tag{17}
\end{equation*}
$$

which allows non-trivial values for the a_{k} only in $k=$ odd integer. Writing

$$
\begin{equation*}
b_{m}=a_{2 m-1}, \quad m=1,2,3, \ldots \tag{18}
\end{equation*}
$$

and defining

$$
\begin{equation*}
A_{m} \equiv b_{m}+b_{m}^{*}, \quad B_{m} \equiv \mathrm{i}\left(b_{m}-b_{m}^{*}\right), \tag{19}
\end{equation*}
$$

it follows that for odd-parity systems, the periodic solutions have the Fourier representation

$$
\begin{equation*}
x(t)=\sum_{m=1}^{\infty}\left[A_{m} \cos (2 m-1) \omega t+B_{m} \sin (2 m-1) \omega t\right] . \tag{20}
\end{equation*}
$$

In other words, only odd multiples of the angular frequency appear.
It should be indicated that the special case of a forced Duffing's equation was studied by Körner [4]. It was concluded that the periodic solution having fundamental angular frequency, ω, took the form given by equation (20). However, the argument given above is general and holds for any odd-parity system having periodic solutions.

The results presented here also can be applied to non-standard odd-parity equations such as [5]

$$
\begin{equation*}
\ddot{x}+x+\varepsilon x^{1 / 3}=0, \quad \ddot{x}+x^{1 / 3}=\varepsilon\left(1-x^{2}\right) \dot{x} . \tag{21,22}
\end{equation*}
$$

Also, for conservative systems, i.e.,

$$
\begin{equation*}
\ddot{x}+x+\varepsilon f(x)=0, \quad f(-x)=-f(x) \tag{23}
\end{equation*}
$$

the initial conditions can also be selected such that $B_{m}=0$; therefore, no sine terms appear in the Fourier representation.

ACKNOWLEDGMENTS

The research reported here was supported in part by the MBRS-SCORE Program at Clark Atlanta University.

REFERENCES

1. R. E. Mickens 1996 Oscillations in Planar Dynamic Systems. Singapore: World Scientific.
2. M. Farkas 1994 Periodic Motions. New York: Springer-Verlag.
3. A. Zygmund 1995 Trigonometrical Series. Dover: New York.
4. T. W. Körner 1988 Fourier Analysis. Cambridge University Press: New York, see Chapter 24.
5. R. E. Mickens 2001 Journal of Sound and Vibration 246, 375-378. Oscillations in $x^{4 / 3}$ potential.
